
1 of 5
Statement A: Approved for public release; Distribution is unlimited.

JTRS INFRASTRUCTURE ARCHITECTURE AND STANDARDS

Donald R. Stephens
CommLargo, Inc.
St. Petersburg, FL

Brian Salisbury
JPEO JTRS

San Diego, CA

Kevin Richardson
The MITRE Corporation

McLean, VA

ABSTRACT
In March 2005, the USD (AT&L) appointed a Joint

Program Executive Officer (JPEO) for JTRS to provide
an overarching management structure across all
Department of Defense (DoD) JTRS programs. The
JPEO JTRS was given full directive authority for all
waveform, radio, and common ancillary equipment
development, performance and design specifications,
standards for operation of the system, and JTRS systems
engineering. The JTRS program objective is to develop
and integrate a family of Software Defined Radios which
maximize software and hardware commonality and
reusability. To achieve this goal, the JPEO is facilitating
the establishment of a standardized infrastructure for
Joint Tactical Radio (JTR) sets.

INTRODUCTION
Earlier DoD radio programs such as Speakeasy [1],
Global Mobile Information Systems (GloMo) [2],
Digital Modular Radio (DMR) [3], and others have
attempted to achieve interoperability and reusability by
specifying Application Program Interface (API)s and
radio infrastructures with varying degrees of success.
Many of the APIs and resulting infrastructure were
proprietary and not open to the entire DoD radio
community. In contrast to these previous programs, the
JPEO JTRS has accumulated a code base of 20 APIs and
over 3.5 million lines of code compliant to the Software
Communications Architecture (SCA). This software
code base with Government Purpose Rights (GPR)
represents a foundation for future JTRS radio
development.

RATIONALE FOR THE INFRASTRUCTURE
Three primary goals of the JPEO JTRS are to provide
the DoD with needed communications capabilities while
reducing the time to field those capabilities, ensuring
interoperability among all JTRS products, and
maintaining overall system affordability. These goals are
realized within the JTRS program through the
incorporation of software reuse and portability
strategies.

Software reuse and software portability are often
misunderstood concepts because their definition is
dependent on the context in which they are used.
Throughout the code base within the JPEO JTRS
Information Repository, the reuse of code across the

JTRS enterprise provides an effective means of
accomplishing each of the three stated objectives.
During the development of software for the JTRS
program, the ability to reference or reuse software from
other JTRS developments, either in whole or part, avoids
duplication of effort and assists in the propagation of
sound coding practices. The distribution of software
post-development also avoids duplication of effort and
improves interoperability by providing functional, tested
code as a basis for porting efforts rather than requiring
the initiation of a new development activity. However,
full interoperability is only established through rigorous
testing to a documented standard.

The effectiveness of the software reuse within the JTRS
program is governed by the ability to create highly
portable software – that is, a software base that can be
migrated easily to different processing environments.
Without building software with portability in mind, the
benefits of software reuse at any level can be
overwhelmed by the cost and effort required to leverage
software written for specific environments or software
that is poorly documented and thus only readily
understood by the original developer.

Analogous to software reuse, there are many levels of
and thus definitions of portability. Within the JTRS
program, portability may be generalized to include two
main focus areas. The first and lowest level of
portability is generating code such that an
implementation may be moved from one specific host or
development environment (i.e. a specific set of
compilers, linkers, libraries, OS, chipsets, etc.) to
another with a minimal amount of changes to the
original code. Achieving portability in this sense
requires the use of standardized libraries, coding
languages (and their compliant toolsets), as well as the
standardization of critical interfaces and complete
documentation. These requirements are captured within
the JTRS infrastructure by the definition of standardized
APIs (including the SCA Application Environment
Profile (AEP)) as well as by the JPEO JTRS
participation in architecture and design reviews. These
characteristics also form the basis of the JTRS
Portability Assessment which is conducted on each
acquired waveform.

2 of 5
Statement A: Approved for public release; Distribution is unlimited.

Even if code is developed in this manner, the portability
of the application is limited if each target platform has a
different method for instantiating and controlling
applications within its domain. The rework required to
adapt to each individual platform can quickly outweigh
the benefits of using common software in the first place.
To address this issue the JPEO requires each JTR Set
and application to be compliant with the SCA, which
defines a protocol for the installation, instantiation, and
control of software artifacts within JTR Sets.

Table 1 captures lessons learned from the first JTRS
waveform ported to a JTR set. While the SCA provides
an excellent framework for General Purpose Processor
(GPP) software, it does not specify the radio-domain
specific interfaces for the waveform software to access
or control radio hardware. The absence of JTR Set
interfaces resulted in additional waveform modifications
because the waveform developer and JTR Set developer
did not have common interfaces.
Table 1 Lessons Learned from Initial Waveform Porting

Porting Issue Corrective Action by JPEO for
Future Waveforms

Absence of JTR Set
APIs

JTRS Standards has approved 22
APIs and Specifications

Missing Files and
Documents

JTRS Software Standard
specifies required documents and
directory structure

Missing Functionality JTRS Software Standard
specifies required delivery.

Absence of DSP and
FPGA Specifications.

MHAL API standardized and
additional extensions in
development.

Waveform Connection
Complexity

Developer education at the JPEO
software conferences

Security Compliance Developer education at the JPEO
software conferences and
participation by NSA

During the establishment of the JPEO’s Information
Repository, it was noted that a coding standard was
necessary to specify the files required in a waveform
delivery and the build structure such that independent
organizations can reproduce the waveform’s software
build. In addition to the file and build directory
specification, the JTRS Software Standard provides
expected coding practices for both C++ and VHSIC
Hardware Description Language (VHDL) code
deliveries.

The SCA defines the base interfaces for software
components deployed upon a Common Object Request
Broker Architecture (CORBA) enabled processing
environment, but does not specify communication or

messaging for waveform components deployed upon
most Digital Signal Processors (DSPs) or Field
Programmable Gate Arrays (FPGAs). The JPEO JTRS
has standardized the Modem Hardware Abstraction
Layer (MHAL) API to define a messaging protocol for
components located on either DSPs or FPGAs.

The last two issues of Table 1 concern the education of
the JTRS developer community in best practices for
reducing the required processing resources for waveform
implementation and observing good security practices in
a distributed processing environment. JPEO JTRS has
hosted a series of software conferences to address the
education of the JTRS development community.

From analysis of the software code base and waveform
porting, the JPEO determined that a radio infrastructure
which provides a host environment for radio waveform
and applications for all DoD JTRS sets was needed. The
objectives of the infrastructure are to provide a
consistent operating environment for waveforms
independent of physical form factor or mission. The
radio infrastructure is being defined for the first
increment of JTRS. Future increments of the JTRS
product line will incorporate infrastructure changes for
advances in technology and missions.

SPECIFICATION OF THE INFRASTRUCTURE
JTRs are expected to provide the functionality of legacy
single-function radios in addition to emerging
transformational networking capabilities. By inference,
a JTR set is thus expected to possess the low-latency and
operator response of older hardware-intensive radios but
also provide the flexibility and configurability of a
computer network. In deployment, JTR sets vary in
mission from large multi-channel radios to a single
channel small form factor radio for smart ordnance.
Such expectations require the overarching architecture
framework to be scalable and extensible.

The JTRS infrastructure must support configurable,
distributed processing where it is most applicable and
also provide the low latency signal messaging necessary
for the physical layer of high bandwidth waveforms. As
expected, existing technology constrains the
simultaneous fulfillment of flexibility/configurability
and latency/ response.

The concept of an infrastructure is to define a host
environment for the execution of waveforms and
applications as shown in Figure 1. The GPP provides a
known environment for waveform components.
Developers are guaranteed a specific set of real time
operating functions, distributed messaging through
CORBA, and radio domain-specific interfaces such as

3 of 5
Statement A: Approved for public release; Distribution is unlimited.

GPS, Ethernet, audio, etc. This promotes reuse and
portability of waveform components. The hardware
dependencies are isolated from the applications by the
APIs defined for radio devices.

GPP

DSP FPGA

Waveform
Component

Radio Domain
Services

Operating
Environment

Radio Hardware
Interfaces

Waveform
Component

MHAL
Messaging

Waveform
Component

MHAL
Messaging

Base
Interfaces

Figure 1 (U) Infrastructure Defines a Known Host

Environment for all JTR Sets

Waveform components residing on a FPGA or DSP are
provided a messaging environment that guarantees
messaging between waveform components located on
different processing elements.

The foundation for the JTRS family of radios is the SCA
which is an architecture framework, specification, and
guidance document for software defined radios. As part
of the specification, the SCA defines a set of base
interfaces known as the Core Framework, which isolate
the system’s applications from the underlying hardware.
These interfaces require the collaboration of
implementations provided by both the JTRS Set provider
and application developers.

To support waveform portability and code reuse, the
SCA specifies operating system APIs that must be
provided by the JTR set’s Real Time Operating System
(RTOS). The AEP of the SCA specifies a subset of the
Portable Operating System Interface (POSIX) Realtime
and embedded application profile that every JTR Set
must support and to which each application is limited.
The JTR Set typically provides additional capabilities
than those specified in the AEP for Set-specific
functions, but by providing a consistent and minimally
constrained set of operations; all applications can depend
on their RTOS requirements being supported regardless
of form factor or mission. This allows independent
waveform developers to generate software that is
guaranteed to execute upon the JTR set.

To further enhance portability, the SCA specifies the
CORBA as a middleware to provide communication
between application components as well as between the
application and the hardware devices of the JTR Set.
Connections are made between components across the
ORB (Object Request Broker) using the SCA-defined
interfaces.

Once deployed and connected, any software component
loaded onto a JTR Set is provided a common execution
environment. This architecture is depicted in Figure 2.

CORBACORBA
FCFC AEP CORBACORBA

FS FCFS FC
AEP

FCFC FSFS

System
Component

Application
Component

CORBACORBA
FS FC FSFS FC FS

Application
Component

System
Component

API

API

API

Operating System

Application Component…………………………….
System Component………………………………...

Common Object Request Broker (CORBA)……..
SCA Application Environment Profile (AEP)……..

Framework Control (FC) and
Framework Services (FS)………………………....

Legend

Figure 2 (U) SCA Architecture Layer Diagram

Within this architecture, a generic JTR Set is depicted by
a variable collection of hardware elements, which
include processing, input and output devices that need to
be connected together to form communication pathways
(channels) based on the requirements of the specific
software loaded onto the system – and it is this software
that will determine the RF output of that channel. The
role of the SCA in this instance is to provide a common
infrastructure for the lifecycle management of the
software and hardware elements, a common method of
ensuring that their requirements and capabilities are
commensurate, and a common scheme for component
interconnection.

STANDARDIZING THE INFRASTRUCTURE
The JPEO JTRS has over 3.5 million source lines of
code in its software repository. This SCA-compliant
software has been developed by the JTRS community
for the different programs of record. To protect this
software base, it was important that the APIs and
standards developed for the infrastructure be compatible
with the code already present in the repository. This
represented a challenge for creation of enterprise-wide
standards, because, although the code was written for an
open architecture system, there were still implementation
and mission-specific interfaces and behavior.

Figure 3 illustrates the process used to define the initial
JTRS APIs. The initial drafts of the APIs were derived

4 of 5
Statement A: Approved for public release; Distribution is unlimited.

from the software and documentation in the JPEO
software repository. Implementation and mission-
specific functionality was removed and the APIs were
generalized for applicability across the JPEO enterprise.
Three primary rules were observed in the generalization:
1) Backward compatibility to the software base was
required, 2) Where necessary, base and extension APIs
were generated to provide minimum capability for small
form factor radios and extended capability for the larger
JTR sets, 3) Only waveform-to-JTR set interfaces were
defined – JTR set interfaces were allowed to be defined
by the set provider.

Review
ICWG

API Website

JTRS Standards

Drafts

Software Base APIs

JTRS Standards

Revisions

Accepted

Rework
Requested

JPEO Info
RepositoryJTRS

Community

Comments
2 wks

Combined
API
Conference
and ICWG

Software Base APIs

API
3

API
N

Accepted

Rework
Requested

API
2

API
1

Review
ICWG

API Website

JTRS Standards

Drafts

Software Base APIs

JTRS Standards

Revisions

Accepted

Rework
Requested

JPEO Info
RepositoryJTRS

Community

Comments
2 wks

Combined
API
Conference
and ICWG

Software Base APIs

API
3

API
N

Accepted

Rework
Requested

API
2

API
1

Figure 3 (U) Process for Initial Definition of JTRS APIs

After review and comment by the JTRS community,
comments were adjudicated and draft APIs were
submitted to the Interface Control Working Group
(ICWG) for a decision. If accepted, the draft was
converted into a final version and if not accepted, the
API was scheduled for rework and resubmission.

It is recognized that missions and external requirements
may conflict with the JTRS Standards. To allow
arbitration of such circumstances, the JPEO ICWG has a
waiver process as depicted in Figure 4. The ICWG is
composed of decision makers who have visibility across
the entire JTRS enterprise and can determine when
resources should be applied to achieve a specific
standard or API, or whether a new API/waiver should be
granted.

Developer

1: Developer

(SAR)

Three Possible
Decisions by

the ICWG

4:
API placed in JPEO

Information Repository

3a: Developer
Requested to
Find Alternative

Revised API API Branch

2a: ICWG
Meeting 10
days

Anomaly Report
Submits Software

2b: ICWG
Emergency
Meeting 2
days

3b: Developer
Permitted to
Make Change

3c: Developer
Allowed to Create
API Branch

Developer

1: Developer

(SAR)

Three Possible
Decisions by

the ICWG

4:
API placed in JPEO

Information Repository

3a: Developer
Requested to
Find Alternative

Revised API API Branch

2a: ICWG
Meeting 10
days

Anomaly Report
Submits Software

2b: ICWG
Emergency
Meeting 2
days

3b: Developer
Permitted to
Make Change

3c: Developer
Allowed to Create
API Branch

Figure 4 (U) Waiver Process for APIs and Standards

As the JTRS family of radios has developed, the users
are requesting a new set of external interfaces for the
JTR sets as shown in Figure 5. Common APIs for
software loaders, network managers, etc, will promote
additional software reuse within the JTRS family of
radios and simultaneously reduce support equipment.

Figure 5 (U) External APIs for the JTRS Family of

Radios

5 of 5
Statement A: Approved for public release; Distribution is unlimited.

FUTURE INCREMENTS OF THE
INFRASTRUCTURE

The JPEO JTRS has reaffirmed its commitment to the
SCA and its role in the evolution of DoD software
defined radio programs. For the JPEO strategy to remain
relevant it will need to continue to evolve to meet the
needs of future waveforms and acquisitions. In addition,
it is imperative for the framework to take advantage of
technological developments within industry as a whole
and provide a mechanism for incorporating those
innovations.

The SCA portion of the infrastructure will be
restructured to allow it to be tailored to accommodate a
wider range of deployment environments. The
framework will provide opportunities for extension that
will allow for the incorporation of platform technologies
(e.g. CORBA) other than those that are currently
identified within the infrastructure. As observed earlier,
the current infrastructure is oriented towards a GPP
environment. A future definition will characterize an
approach which specifies a common approach for an
“SCA model” on a wider set of operating environments.
The approach must incorporate technologies that are
complementary to the existing SCA model, yet reflect
the capabilities of widely available technologies and
meet the needs of the next generation of program
acquisitions. Candidate approaches for such extensions
include ORB utilization in non-GPP processing
environments, the introduction of a FPGA/DSP
container model or leveraging specifications targeted for
system on chip design. Another area for evolution of the
infrastructure is to expand its support for services within
the scope of its component-based framework. Any
modifications within this area will focus on better
integrating the service concept within the overall
management approach.

The JTRS APIs will also evolve to provide a wider array
of platform interfaces. The initial API development
approach provides a bridge between the initial phase of
JTRS waveform development and the initial product
deployments. This work must continue in order to

provide an environment that facilitates application
development that is consistent with the original design
tenets of the JTRS program. However, once that set of
interfaces has been identified and developed then the
program will be able to specify common APIs to support
JTRS platforms such as system management and control
services.

SUMMARY
The JPEO JTRS contains a standards organization that
has been chartered with the responsibility of creating
architectural framework and infrastructure specifications
that allow the JTRS program to facilitate the
development of waveform, radio, and common ancillary
equipment. The specifications that the group has
developed and refined have been focused on meeting the
program objectives. The initial development approach
has focused on leveraging the body of work developed
in the early portion of the JTRS program while
establishing a flexible and extensible platform that will
serve the current and future needs of system and
application development.

References
[1] Peter G. Cook and Wayne Bonser Architectural
Overview of the SPEAKeasy System, IEEE Journal on
Selected Areas in Communications, vol. 17, no. 4, April
1999, pp. 650 - 661
[2] Barry M. Leiner, Robert J. Ruth and Ambatipudi R.
Sastry Goals and challenges of the DARPA GloMo
program, IEEE Personal Communications, vol. 3, no. 6,
December 1996, pp. 34 - 43

[3] Byron Tarver, Eric Christensen, Annamarie Miller and
Elisa R. Wing Digital modular radio (DMR) as a
maritime/Fixed joint tactical radio system (JTRS),
MILCOM 2001 - IEEE Military Communications
Conference, no. 1, October 2001, pp. 163 - 167

